Selected Topics in Approximate Solutions of Nonlinear Conservation Laws. High-resolution Central Schemes

نویسنده

  • EITAN TADMOR
چکیده

Central schemes offer a simple and versatile approach for computing approximate solutions of non-linear systems of hyperbolic conservation laws and related PDEs. The solution of such problems often involves the spontaneous evolution of steep gradients. The multiscale aspect of these gradients poses a main computational challenge for their numerical solution. Central schemes utilize a minimal amount of information on the propagation speeds associated with the problems, in order to accurately detect these steep gradients. This information is then coupled with high-order, non-oscillatory reconstruction of the approximate solution in ‘the direction of smoothness’: that is, information of smoothness does not cross regions of steep gradients. The use of central stencils enables us to realize the reconstructed solutions through simple quadratures. In this manner, central schemes avoid the intricate and time-consuming details of the eigen-structure of the underlying PDEs, and in particular, the use of (approximate) Riemann solvers, dimensional splitting, etc. The resulting family of central schemes offers relatively simple, “black-box” solvers for a wide variety of problems governed by multi-dimensional systems of non-linear hyperbolic conservation laws and related convection-diffusion problems. We highlight several features of this new class of central schemes. Scalar equations. Both the secondand third-order schemes were shown to have variation bounds, which in turn yield convergence with precise error estimates, as well as entropy and (multidimensional) L-stability estimates. Systems of equations. Extension to systems is carried out by component-wise application of the scalar framework. It is in this context that our central schemes offer a remarkable advantage over the corresponding upwind framework. Multidimensional problems. Since we bypass the need for (approximate) Riemann solvers, multidimensional problems are solved without dimensional splitting. In fact, the class of central schemes is utilized for a variety of nonlinear transport equations. A partial list of more than 120 references can be found in CentPack, [4]. CentPack is a collection of freely distributed C++ routines that implement a number of high-order, non-oscillatory central schemes for hyperbolic systems of conservation laws in oneand two-space dimensions, ut+f(u)x+g(u)y = 0.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Nonoscillatory Central Schemes for Hyperbolic Systems of Conservation Laws in Three-Space Dimensions

We extend a family of high-resolution, semidiscrete central schemes for hyperbolic systems of conservation laws to three-space dimensions. Details of the schemes, their implementation, and properties are presented together with results from several prototypical applications of hyperbolic conservation laws including a nonlinear scalar equation, the Euler equations of gas dynamics, and the ideal ...

متن کامل

Non-oscillatory Central Schemes for 3D Hyperbolic Conservation Laws

We present a family of high-resolution, semi-discrete central schemes for hyperbolic systems of conservation laws in three space dimensions. The proposed schemes require minimal characteristic information to approximate the solutions of hyperbolic conservation laws, resulting in simple black box type solvers. Along with a description of the schemes and an overview of their implementation, we pr...

متن کامل

Approximate Solutions of Nonlinear Conservation Laws

This is a summary of ve lectures delivered at the CIME course on "Advanced Numerical Approximation of Nonlinear Hyperbolic Equations" held in Cetraro, Italy, on June 1997. Following the introductory lecture I | which provides a general overview of approximate solution to nonlinear conservation laws, the remaining lectures deal with the speciics of four complementing topics: Lecture II. Finite-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010